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Detecting the edge of the tongue: A tutorial
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Abstract

The goal of this paper is to provide a tutorial introduction to the topic of edge detection of the tongue
from ultrasound scans for researchers in speech science and phonetics. The method introduced here
is Active Contours (also called snakes), a method for searching for an edge, assuming that it is a
smooth curve in the image data. The advantage of this approach is that it is robust to the noisy speckle
that clouds edges. This method has been implemented in several software packages currently used for
detecting the edge of the tongue in ultrasound images. The tutorial concludes with an overview of the
scale-space and Kalman filter approaches, state-of-the-art developments in image processing that will
likely influence work on tongue edge detection in the coming years.
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Several modalities have been used for imaging the tongue during speech production.
Fleshpoint tracking systems like Electromagnetic Articulography (Perkell, Cohen, Svirsky,
Matthies, Garabieta, & Jackson, 1992) and X-ray Microbeam (Westbury, 1994) detect a
small number of points on the tongue, while imaging modalities like X-ray cineradiography
(Perkell, 1969), MRI (Baer, Gore, Gracco, & Nye, 1991) and Ultrasound (Stone, 1990)
image continuous sections of the tongue. The advantage of the fleshpoint detection
modalities is that their output contains exact information about the location of the points of
the tongue tracked. If the shape of the tongue is not very complex, as it is for some vowels
for instance, the continuous edge of the tongue can be interpolated from the partial
information provided by the few points tracked using a smooth curve (Kaburagi & Honda,
1994). However, the tongue can assume fairly complicated shapes. For instance, when
contact with the palate occurs, flattening of portions of the edge can occur. Interpolation
between the fleshpoints misses this flattening.

The output of the imaging modalities contains a continuous edge, including flattening
and other possible irregularities, but the output is an image, not numerical data. A crucial
step for making such images useful is to automatically detect the edge of the tongue from
them. Ultrasound has a distinct advantage in this regard, since its principle of operation
makes it a physical edge detection device. High frequency sound from the probe travels in
the medium until a medium with different sound-transmitting properties is reached, at
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which point some of the sound is reflected back to the receiver, specifying the distance to
the mismatch, which is then graphically indicated in the image with brightness proportional
to the magnitude of the mismatch. In the application to tongue imaging, the probe is placed
under the chin and sound travels through the tongue tissue until it reaches the air layer
above. Tissue and air have drastically different sound-transmitting properties so the
reflection is very high in magnitude, yielding a distinct edge effect on the image. The actual
edge of the tongue is the interface between the bright reflection from the air layer and the
darker region that represents the tongue tissue. X-ray and MRI work on different physical
principles, which gives them less advantage in edge detection. For X-ray, detecting the edge
becomes so difficult that the most usual method is manual tracing.

The raw ultrasound image is close to specifying the edge of the tongue, but it is usually
rich in speckle, which results from the scattering of sound from targets smaller than the
wavelength of the sound. Reflection from edges are also minimal when the mismatch is
parallel to the sound travel direction, so some parts of the tongue will often disappear from
the image altogether. Additionally, some structures within the tongue can appear quite
brightly. For these reasons, detection of the edge of the tongue from the ultrasound scanner
output requires further processing.

There are many approaches to edge detection (Jain, 1989; Pitas, 2000; Gonzalez &
Woods, 2002). In this paper, a popular method of edge detection in ultrasound is
introduced. Speech scientists and phoneticians are increasingly making use of ultrasound
to probe the motion of the tongue during speech production and swallowing. The
purpose of this paper is to provide this audience with some background in the edge
detection concepts that would allow them to make better use of software developed by
engineers and computer scientists. SectionII provides a tutorial introduction to edge
detection using snakes (Kass, Witkin, & Terzopoulos, 1987). SectionIII provides an
overview of state-of-the-art developments in edge detection that have application to tongue
edge detection including scale-space techniques and Kalman filter approaches to dynamic
edge detection.

Snakes

Ultrasound has been used for about 20 years in the field of tongue imaging (Morrish,
Stone, Shawker, & Sonies, 1985). A variety of methods have been attempted to detect the
edge of the tongue from ultrasound images, but the most often used is Active Contours or
snakes. This approach is based on work in the 1980s (Kass et al., 1987), but it has
provided a framework in which many of the current developments in the field are
expressed.

There are several requirements that a group of pixels in an image must have to qualify
as an edge. The most basic of these criteria is that this group of pixels constitute a
discontinuity in some property of the image, usually the brightness. A grayscale image is
represented on a computer as a matrix, where the number in each row and column
represents the brightness of a pixel in the image. To understand how an edge can be found,
we begin with a simpler image that is one dimensional, e.g., [34 37 36 52 49 5352 53]. Itis
easy to tell by eye that there is a discontinuity between the third and fourth pixel. How can
this discontinuity be automatically detected? The discontinuity is indicated by a large
difference between consecutive values. If we calculate the differences we obtain: {3 —1 16
—3 4 —1 1]. The discontinuity can then be detected by picking out the maximum of this
signal. Computationally the differencing step is accomplished by multiplying the signal -1
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1] by each consecutive pair of pixel values (componentwise) and summing the result, e.g.,
[34 37] * [—1 1]=3. This step is called convolution, what we have done is to convolve the
image with the mask [—1 1].

This is the first step of automatic edge detection in general. In the two dimensional
case, we have a matrix of pixel values. To detect an edge, we convolve the matrix with a
matrix mask that emphasizes discontinuities in the image. If the mask differences the
image, the output of convolution is called the gradient. Pixels that are judged by a human
to constitute an edge co-occur with maxima of the gradient. However due to noise, there
will be far more maxima in the gradient than there are edges in the image. A white pixel of
noise in a background of black (e.g., [0 0 256 0 0]) would be registered as part of an edge
by a poor edge detection algorithm. Besides the ever-present noise, an additional problem
is that, as mentioned earlier, portions of the tongue that are nearly parallel to the direction
of sound travel do not reflect sound and therefore show up poorly in the edge. The
gradient of the tongue image will therefore be high at some pixels corresponding to the
true edge of the tongue, but it may be low at other points of the true edge. In addition the
gradient will also be high at non-uniformities inside the tongue as well as at pixel noise
and speckle regions.

An additional constraint on edges that is especially true of the tongue edge is that an edge
is a smooth entity—two neighboring pixels of an edge are close to each other. Active
contours or “snakes” is an iterative approach to edge detection that embodies the
smoothness constraint on edges (Kass et al., 1987). A snake is a curve whose shape evolves
in time to move closer and closer to the true edge in the object. The initial position of the
curve is chosen to be somewhat close to the true edge, and an algorithm iteratively changes
the positions of the points on the curve so that they move closer and closer to points with a
high gradient, while maintaining a smooth curve. The snake slithers to lock onto the edge,
as it were. The snake at time 0 is either provided by the user, who draws it by hand close to
the image, or it can be the edge already detected from a previous image, if we know that the
true edge in the current frame is not far from the edge already found in the previous image.
Two forces act on the curve at each time step (each iteration) to deform it to better
approximate the edge. The first type of force is internal to the snake. It is a force that makes
the curve smoother and smoother. We can calculate this force, for instance, by comparing
the difference of the position of each point in the curve with the position of the two points
surrounding it. If the position of the point is far from those that surround it, we say that this
point increases the energy of the snake. This is in analogy with an elastic stick one of whose
points is far from the points around it. This stick has high elastic energy (tension) that
forces the point to go back to its equilibrium position. In the same way, if there is a large
difference in the location of a point on the snake from those surrounding it, a large force
acts on the snake at that point which forces that point to assume a position nearer to the
points surrounding it. At each iteration, therefore, an internal force is calculated for each
point of the curve and that force is made to act on the curve, changing its shape to a
smoother one. Snake algorithms are called energy minimization algorithms, since at each
iteration, the total internal energy of the curve is reduced. Figure 1, shows an initial snake
together with twenty five iterations, using an internal force which makes each point assume
a location matching the average of the locations of the two points on the curve closest to it.
This particular force is one of many that could have been used. As the iterations proceed,
the snake becomes smoother, until it becomes a line.

The internal force on the snake by itself is therefore not very useful, unless we always
want to recognize lines. Another force coming from the image itself is necessary. This is the
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Initial Snake . .

Figure 1. The initial snake converges to a smooth shape, a line, by minimizing its own internal energy.

external force. It arises from features of the image that we aim to latch onto, like high
gradient points. At each iteration, an external force acts on each point forcing it to a
neighboring point with a higher gradient value. This process can be understood as energy
minimization. To see this, imagine a three dimensional representation of the image, where
the height of each point represents the negative of the gradient at that point. Edges are
valleys in this terrain. The snake starts out on a higher terrain and the external forces attract
the snake to the valley. This process can be understood as energy minimization since
particles on a high peak have more potential energy than those in a valley. Figure 2 shows
an image of a black disk surrounded by a white one. An initial snake is placed in the white
region. It deforms due to the external force of the image gradient for 15 iterations. It
converges after about the fifth iteration to the gray edge between the white and gray. The
implementation used here is called the Greedy Algorithm (Williams and Shah, 1992). At
each iteration, a window of 35 pixels is defined around every snake point and a search is
performed for a pixel with a lower negative gradient (lower energy). That snake point is
then replaced with the one with lower energy. This process is repeated several times, and a
threshold is set for the distance between consecutive snakes beyond which no more
iterations are performed. Iterations are performed until convergence is reached, i.e., the
threshold is reached.

The examples presented so far show a snake only under an internal force (Figure 1) or an
external force (Figure 2). In practice of course, a snake evolves under both forces. But it
often happens that points on the curve move too far apart or too close to each other,
altering the size of the initial curve. But the initial snake is often chosen by the researcher to
be the basic shape of the edge sought, so it is not desirable for the snake to become much
larger or smaller. For this reason, there is an additional internal force that penalizes the
change in the distance between snake points.

After this intuitive introduction to snakes, it is possible to appreciate their mathematical
specification. The snake is a curve g(s)= [x(s), y(s)], where s is a parameter specifying the
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Figure 2. The initial snake converges to the gray edge between the white and black as it minimizes its external
energy.

specific point on the snake running usually from 0 to 1, and x and y specify that point’s
location in the plane. We can specify the energy of the curve as:

E= EInzemal + EExternal
1
Elntemal = J ot|g’ (S)I + ﬁlg”(s) ‘dS
4]

EExtemal =-VI (x3 y)2

In the internal energy term, the integral in the variable s denotes the fact that we are
summing the energy for all the points in the snake. The first term g’(s) is the first derivative
of the location of snake points, which specifies the distance between snake points. The
internal energy of the curve is therefore greater if the distance between the points is large.
The coefficient « is chosen by the user and specifies how significant this term should be in
the total energy. The second term g’(s) is the second derivative of the location of the snake
points and denotes the difference in location of each point from the average of the
surrounding points. The closer each point is to its neighbors, the smoother the curve. § can
be set to determine the contribution of this term to the total energy. In general, the
coefficients can be set arbitrarily and as a function of s by the user to accelerate the
convergence of the snake to the edge. In the external energy term, I(x,y) refers to the
intensity or brightness of each point in the image. V is the gradient operator, whose square
is taken. As discussed above the external energy is the negative of the gradient. The snake
evolves by minimizing its total energy. This is usually done through a search at each
iteration for new points whose total energy is less using the Greedy Algorithm. Different
snakes implementations differ with respect to the details of the internal and external forces
as well as the algorithm used to minimize the energy of the snake.
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Akgul, Kambhamettu, & Stone (1999) applied the snakes concepts described above to
the detection of the edge of the tongue from ultrasound scans. In their implementation,
there are three terms in the internal energy. The first term is the smoothness energy
Eqmo=1—cos ;. 6 specifies the angle between the i and i+ 1™ point on the snake. If the
angle at a specific point is 0, the cos #=1, and E,o=0. This is the maximally smooth case.
The opposite case is if the angle is 90°, in which case Emo=1, and a strong force would act
to reduce this angle at the next iteration. The second term is the similarity energy Egim,. This
term forces the final snake to be as similar as possible to some model snake S, which
encapsulates how the edge of the tongue looks to the user—Eg;, measures the departure of
shape the snake at each iteration from the model snake S. The third term Egis: measures the
stretching of the snake and penalizes a snake when its points grow farther apart. Its form is:

Egio(vi) = __dw—w-il 1|y specifies the snake point and the energy contributed by each

n

1 } L
n—1 ‘vl ‘UJ’1|

j=2

point is therefore measured by the stretch between itself and the next point as normalized
by the total length. The external energy term in their implementation is Egx = —|VI(2i)l,
which is similar to the general term, but is implemented using optical flow, an advanced
method for gradient computation. By using these energy terms and a dynamic
programming energy minimization algorithm, the authors demonstrated high quality
detection of the edge of the tongue. Many examples can be seen in their paper.

Some examples will now be given of the application of the snakes technique to edge
detection of the tongue. There are many ways to implement both the external energy and
internal energy constraints, and each leads to different performance. One popular method
for implementing the external energy is to search for the zero of the derivative of the
gradient. This makes sense, since where the gradient is at a maximum, its derivative will be
zero. Figure 3 shows the application of this approach to a portion of the tongue edge. The
top panel shows a portion of the tongue edge. The middle panel shows the same portion
after the application of a Laplacian of Gaussian filter (LoG), which roughly takes the
derivative of the gradient of the smoothed image. As can be seen, the edge of the tongue,
which is between the white layer and the darker layer below it in the top panel, becomes
sandwiched between two layers black and white after the application of the filter, so the
edge of the tongue has been emphasized. The bottom layer shows the automatically
detected maxima and minima of the output of the LoG filter, and edge of the tongue can be
found between them as a zero of the output.

A popular method of implementing the internal energy is the B-spline method (Blake &
Isard, 1998; Menet, Saint-Marc, & Medioni, 1990; Blake, Curwen, & Zisserman, 1993),
where the edge is specified to contain a small number of cubic curves that join to each other
smoothly. B-splines in this context are discussed in (Blake & Isard, 1998; Iskarous, 2001).
An application of this technique to four frames from the sequence [ad] can be seen in
Figure 4. As can be seen, the method leads to high quality detection for most parts of the
tongue. Arrows point to portions where the edge was missed. The main variable that can be
changed to improve performance is how many curve segments to include in the edge. If a
very small number of segments are chosen (3-5), then nuances in the edge are missed, but
if there are too many segments (more than ten), the edge will be over-fitted. An example of
such a situation is shown in Figure5. High quality detection is achieved by manual
intervention to change the number of segments, if the fit of the edge is seen to be less than
optimal. Unfortunately, most methods still do require human intervention, but as the
methods improve, less and less reliance on the operator is needed.
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Figure 3. Top: A portion of a tongue edge from an ultrasound image. Middle: The result of convolving the
window with LoG. Bottom: Automatically detected minima and maxima of LoG.

Future directions in edge detection

The snakes-based techniques discussed in this paper form the foundation of most
techniques used for the application of tongue edge detection. Within the snakes framework,

igure 4. Frames from the sequence [ad] spoken by an American En

glish male speaker. The frames shown are
om the lowest position for the [a] to the release of the [d].
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Figure 5. Illustration of the effect of varying number of spline segments in the curve on edge detection quality. The
same frame is subjected to detection by a curve of four segments (Left) and ten segments (Right).

several new approaches have emerged in the last ten years that have improved the quality of
detection. Two of these will be covered briefly in this section, since they have already been
used in tongue tracking and are likely to influence progress in this field: the first is scale-
space/wavelets and the second is Kalman filtering.

As discussed in the previous section, edge detection becomes more successful, the more
we constrain what is a possible edge; €.g. that it is a smooth entity. Scale-space methods
Jook at edges as features of an image that are independent of the scale at which the image is
processed. Any given image can be looked at from a coarse scale, where the details in the
image have been removed or from a fine scale, where the details are left. Indeed there is a
continuum of scales where layers of details are successively removed. For instance, Figure 6
shows a portion of a tongue edge seen from six different scales from fine to coarse.

Figure 6. Portion of tongue seen from six different scales formed by Gaussian filtering of the image with sigma
levels from 1 to 8.
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The different scales were formed by filtering the image with a Gaussian filter with
different sigmas. One thing that is preserved at the different scales, hoWwever, is the presence
of the edge. It was the observation of Marr (1982) that an edge is preserved under the
successive blurring of an image, i.e., the edges are scale invariant. Figure 7 shows the
gradient of a portion of a tongue edge under a fine scale (Left) and a coarse scale (Right). It
- can be seen that the gradient is more coherent and more informative of the edge at the
lower scale. This approach to edge detection has informed work in snakes based edge
detection by performing the search for an edge under different scales and finding the
optimal scale at which to search for the edge (Tsap, Goldgof, & Sarkar, 2000; Geiger &
Kogler, 1993), and has been applied by Akgul & Kambhamettu (2003) to edge detection in
ultrasound images.

All the approaches covered until now are basically static in that each image in a sequence
is treated separately. Dynamic approaches to edge detection assume that the edge is a
deforming contour that is physically evolving through a sequence. A dynamical system is
assumed to underlie the evolution of the edge and information about edge evolution is
incorporated into the search for an edge. This is therefore yet another way to improve edge
detection by constraining the search to edges that could have physically evolved from an
earlier edge. A popular approach to dynamic edge detection that has been incorporated in
the snakes approach is the Kalman Filter. In this technique, a dynamical system is assumed
to have a number of state variables x describing its configuration variables at any moment in
type. The dynamical system then evolves in time according to a difference/differential
equation x =Ax+ Bu, where x is the change in state, A describes how earlier states influence
states, u is a control variable, and B is the relation between u and the change in x. When the
state evolves it is then observed as the observable variable y=Cx+ Dn, where C represents
the influence of the observation device, n is noise and D represents the weight of the noise.
The set up therefore is that of a dynamical system that evolves physically, but that is
observed under noise. In the case of edge detection, the state variables are the parameters of
the edge and the observable variable is the noisy edge as seen in an ultrasound image, for
example. The goal of the Kalman Filter is to estimate the state variable (edge) from the
observed variable (noisy image) by using two types of information: assumptions about A,
the dynamic component that allows us to predict how the edge deterministically evolves,
and the noisy observations. The Kalman Filter is a way to automatically decide ‘how to
weigh the information from previous edges against the information from the noisy

Figure 7. The gradient around the tongue edge at a scale of sigma=2 (Left) and 6 (Right).
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observations. For instance, at a certain stage in edge evolution, it may be that the
observations become very noisy, in which case the Kalman Filter would find an edge very
close to that found at the last stage, weighing the noisy observation very low. At a different
point in time, there maybe a lot of doubt as to the assumed dynamics A of the edge
evolution process, in which case, the edge would follow the noisy observation more than the
edge predicted by the dynamics A. The Kalman filter automatically determines the weights
to attach to previous observations vs. noisy current observations by solving a Riccati
Equation, a first order differential equation of second degree. This technique to edge
detection is explored at great length by Blake and Isard (1998).

Conclusion

In this paper, the author has outlined research in the detection of the tongue edge from
ultrasound scans. The progress is from an approach in which only local information about =
edges is used, to one where the edge is assumed to be smooth. A brief introduction was also -
given of scale-space and dynamic approaches to edge detection. One of the many avenues
of further research in this area is how to combine all the spatiotemporal constraints
discussed into a system that uses as much a priori information about the edge to improve
the search. One way this will evolve is by learning a great deal more about how the tongue
edge actually does deform in different speech tasks, since the more assumptions we can
make about A, the dynamics, the more constrained is the search for the edge. This is likely
to involve both theoretical work on modeling tongue dynamics by muscle deformation
simulations as well as extensive empirical work on how the tongue actually deforms within a
syllable across speakers and languages.
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